首页 > 选课中心 > 人工智能 > 【快班】Python机器学习Kaggle案例实战
【快班】Python机器学习Kaggle案例实战
此课程所属 【python数据分析师职业方向】, 【人工智能职业方向】专业,报名专业套餐,可享受0元学习特惠!点击了解详情
随报随学 共10课 ★★☆
开课时间 课程周期 难易度
招生中

立即报名
课程介绍
本课程是《机器学习》《Python机器学习》课程的姐妹篇,旨在加强学员的实际训练,以案例作为基本讲解单元,围绕案例讲解分析思路,特征和模型选择,编写代码等。
本课程的受众主要是没有经过专业训练的IT专业人员,他们可能是程序员,运维,IT系统架构师等等,也适合没有经过科班训练的数据分析师。数据分析是一个业务+算法+IT的交叉领域,同时熟悉这三方面知识的人,可以玩转大数据,产生无穷无尽的花样,产生巨大的价值。但很无奈的情况是这种人才太少,IT人员即使熟悉本公司的业务,但同时又熟悉算法的人极少。一般只能做一些简单的维度统计,指标计算等等,如果说到开发更高智能的系统,知识上鞭长莫及。本课程的目标,正是要打破知识的鸿沟,向IT人员普及算法知识,并把这些知识用于实际项目,把中国的机器学习应用能力提高一个台阶。
每期班的学员都会被加入到一个微信群,除了平时的问题解答外,还会另外安排约5次固定时间微课思路分享和答疑,与10次讲授共计学习时间约十几周左右。

Kaggle简介:
Kaggle创立于2010,是一个专注于举办数据科学周边的线上竞赛的网站。它吸引了大量数据科学家、机器学习开发者的参与,为各类现实中的商业难题开发基于数据的算法解决方案。竞赛的获胜者、领先者,在收获对方公司提供的优厚报酬之外,还将引起业内科技巨头的注意,获得各路 HR 青睐,为自己的职业道路铺上红地毯。
Kaggle 是当今较大的数据科学家、机器学习开发者社区,其行业地位独一无二。
课程目标:
课程从已完结的竞赛中选取了10个比较有代表性的案例,通过分析优胜参赛者的解决思路和方法,从中学习问题的解决思路、数据的预处理方法,各种机器学习、深度学习等领域中的优秀算法,让学员可以将这些方法解决各种实际数据分析问题。

课程大纲
第一课:Crowdflower Search Results Relevance
案例介绍:预测来自电子商务站点的搜索结果的准确性,将搜索得到的网页按相关性排序
获奖者所用方法:通过ensemble learning整合多个模型的结果
涉及算法:Ensemble learning

第二课:Santander Product Recommendation
案例介绍:根据银行客户1.5年内的行为数据,预测用户会下一步会投资的新产品
获奖者所用方法:通过XGBoost构建了多个基本模型,然后将基本模型整合为一个总模型
涉及算法:XGBoost

第三课:TalkingData Mobile User Demographics
案例介绍:根据用户的手机应用下载和使用行为来预测用户的人口统计数据(年龄、性别等)
获奖者所用方法: 先预测性别的概率;使用性别的预测值作为额外的特征加入到模型中,预测年龄;通过条件概率得到两个目标变量的预测概率
涉及算法:两段预测,XGBoost

第四课:Facebook V: Predicting Check Ins
案例介绍:预测用户会在哪个地方登陆Facebook
获奖者所用方法:特征选择:数据块的最近邻计算;模型构建:基于XGBoost的两步模型
涉及算法:XGboost
 
第五课:Avito Duplicate Ads Detection
案例介绍:为了避免卖家发布各种经过少量改动的广告导致买家难以分辨,参赛者需要设计一个模型,自动识别配对中的广告是否同一个广告
获奖者所用方法:特征选择:采用了FTIM方法测试特征的不稳定性,提出过度拟合的特征。通过XGBoost和Keras构建一层模型;然后通过底层模型构建XGBoost 和随机森林,最终综合两者结果得到最终结果
涉及算法:FTIM;元模型

第六课:Outbrain Click Prediction  
案例介绍:在一组针对用户推荐内容中,预测用户点击每个链接的可能,将这些推荐内容按照点击可能的大小排序
获奖者所用方法:两步元模型:通过LibFFM构建第一层模型,再使用XGBoost和Keras构建第二层模型
涉及算法:LibFFM;XGBoost;Keras框架

第七课:Click-Through Rate Prediction
案例介绍:预测某个广告是否会被点击
获奖者所用方法:将数据拆分成不同的子集,构建不同的子模型,再整合
涉及算法:LIBFFM

第八课:Avito Context Ad Clicks
案例介绍:预测俄罗斯最大的一般分类网站的用户在浏览网站时,是否点击上下文广告
获奖者所用方法:预处理:散列技巧和消极的抽样。 学习方法:FFM、FM和XGBoost。
涉及算法:FFM;FM;XGboost

第九课:Rossmann Store Sales
案例介绍:预测Rossmann公司各个门店的6周销售量
获奖者所用方法:分类特征的处理:创建了一种 Entity Embedding(实体嵌入)的方法去代表在多维空间中的分类特征。
涉及算法:Entity Embedding;神经网络

第十课:Amazon.com - Employee Access Challenge
案例介绍:根据员工的职业角色,预测员工的访问需求
获奖者所用方法:11个模型的线性组合:使用不同特征训练的GBM模型,GLNNET模型,随机森林模型,logistic回归模型
涉及算法:GBM模型,GLNNET模型,随机森林模型,logistic回归模型
授课讲师
tigerfish,知名数据库网站ITPUB创始人,知名数据分析网站炼数成金创始人。数据库专家,数据分析专家,有丰富的IT领域、数学领域的知识经验。他将带领他的数据分析团队完成整个授课工作。 他将负责大部分算法讲解和思路分析部分。
何翠仪,中山大学统计学专业毕业,炼数成金专职讲师,在过去曾负责多门炼数成金数据分析课程的助教工作,目前正在主持建设炼数成金的认证题库系统。她将负责代码讲解部分。

何翠仪,毕业于中山大学统计学专业,炼数成金专职讲师。
在炼数成金上开设了多门关于数据分析与数据挖掘相关的课程,如《大数据的统计学基础》、《大数据的矩阵基础》《金融时间序列分析》等,也曾到不同的公司开展R语言与数据分析的相关培训。对数据分析有深刻认识,曾与不同领域公司合作,参与到多个数据分析的项目中,如华为、广州地铁等
课程环境
Python2或3较新版本
授课对象
对机器学习有兴趣的朋友,特别适合想学习算法的IT专业人员或非科班出身的数据分析人员。最好能有一些线性代数,统计等数学基本知识,没有也无妨,可以在课程期间快速补强。
收获预期
能独立完成某些特定场景的分析工作,胜任数据分析师,机器学习程序员等流行职位的技术要求
课程学费
学费:400元(固定学费:300元 + 逆向学费:100元)
新颖的课程收费形式:“逆向收费”约等于免费学习,课程收取300元固定收费 + 100元逆向学费,学习圆满则全额奖励返还给学员!
特别说明如下
本门课程本来打算完全免费,某位大神曾经说过“成功就是正确的方向再加上适度的压力”。考虑到讲师本身要付出巨大的劳动,为了防止一些朋友在学习途中半途而废,浪费了讲师的付出,为此我们计划模仿某些健身课程,使用“逆向收费”的方法。 在 报名时每位报名者收取400元,其中300元为固定 收费,另外100元是暂存学费,即如果学员能完成全部课程要求,包括完成全部的书面作业,则100元全款退回。如果学员未能坚持到完全所有的学习计划任务,则会被扣款。期望这种方式可以转化为大家强烈的学习愿望和驱动力!
课程授课方式

1、 学习方式:老师发布教学资料、教材,幻灯片和视频,学员通过网络下载学习。同时通过论坛互动中老师对学员进行指导及学员之间相互交流。

2、 学习作业:每课均有布置课后作业,学员完成书面作业后则可进入下一课学习。

3、 老师辅导:通过论坛站内信及邮件等多种方式与老师进行一对一互动。

4、 完成课程:最后一课作业交纳后,老师完成作业批改,即可完成课程并取回相应剩余的逆向学费。

联系我们
咨询Email :edu01@dataguru.cnedu02@dataguru.cn
课程入门讨论咨询QQ群:303917420(群内有培训公开课视频供大家免费观看)
咨询QQ: 点击这里给我发消息 点击这里给我发消息
您是否对此课程还有疑问,那么请 点击进入FAQ,您的问题将基本得到解答
全国统一咨询热线: 4008-010-006
最新技术热点、 最新行业资讯,最新培训课程信息,尽在炼数成金官方微信,低成本传递高端知识!技术成就梦想!欢迎关注!
打开微信,使用扫一扫功能,即刻关注炼数成金官方微信账户,不容错过的精彩,期待您的体验!!!

授课老师

其他快班课程

【快班】大语言模型部署
【快班】基于大语言模型的AI Agent
【快班】Transformer从自然语言到计算机视觉的跨界之旅
【快班】怎样制作令人惊叹的视频-Manim科学动画篇
【快班】人工智能与药物研发基础
【快班】跟Py sir一起学Excel
【快班】从零入门金融业信贷风控算法
【快班】并行化计算与CUDA编程
【快班】Python数据处理实战:基于真实场景的数据
【快班】量化投资基础计算与模型
【快班】Architecting on AWS架构与实践
【快班】Node.js Web开发实战
【快班】漫步华尔街
【快班】目标检测模型YOLOV3原理及实战
【快班】Cloudera Hadoop管理认证实战
【快班】【强化学习系列】强化视觉导航技术导引
【快班】PostgreSQL初识与提高
【快班】区块链新时代:技术原理与实操
【快班】Python全栈学习——Python基础及Web开发
【快班】端到端(End TO End)--由传统方法到深度学习
【快班】【百万年薪系列】宽度学习实战及算法解析
【快班】敏捷Agile快速入门
【快班】安全渗透测试工具之Burp Suite使用精讲
【快班】Python全栈学习——Python自动化测试
【快班】系统运维之基础服务进阶实战
【快班】Elastic Stack实战
【快班】测试架构师核心技术
【快班】python网络爬虫应用实战
【快班】locust性能测试实战
【快班】大话流式处理系统 Flink 核心原理
【快班】PyTorch – 深度学习全栈工程师进阶案例实战
【快班】MySQL高可用原理、架构与实战
【快班】快速成为深度学习全栈工程师
【快班】Python数据可视化实战
【快班】股票投资高手武器系列之缠论系统
【快班】基于R的Kaggle实战案例详解
【快班】计算机视觉:从入门到精通,极限剖析图像识别学习算法
【快班】黄金Quant工——量化金融分析师入门
【快班】DL4CV实战——构建基于深度学习的智能图像识别系统
【快班】Web全栈开发理论与实践
【快班】Oracle DB Performance Tuning(DSI系列Ⅳ)
【快班】精准安防场景理解及语义分割
【快班】【免费公开课】Python 的安装与部署
【快班】计算机视觉算法详解与实战开发
【快班】Python金融业数据化运营实战
【快班】人脸识别精准安防讲习班
【快班】Oracle SQL Tuning(DSI系列Ⅲ)
【快班】人脸识别90天速成特训班
【快班】Python3入门到精通实战特训
【快班】基于软件学习数据挖掘算法与案例
【快班】股票投资基础之技术分析
【快班】股票投资基础之基本面分析
【快班】Python机器学习
【快班】python3接口自动化测试开发实战
【快班】【免费公开课】《Hadoop入门手册》——CDH集群安装
【快班】Datastage基础及开发实践
【快班】Tensorflow工程师职场实战技
【快班】互联网金融中的交易反欺诈模型
【快班】机器学习及其matlab实现—从基础到实践
【快班】OpenAI强化学习实战
【快班】Node.js项目实战:从编写代码到服务器部署
【快班】Java Web开发精讲
【快班】JavaScript从入门到精通
【快班】让服务飞起来:实时计算及其应用
【快班】突击pyspark:数据挖掘的力量倍增器
【快班】赢在大数据-人工智能的应用实践
【快班】【免费公开课】《数据科学入门手册》——DSX架构与部署
【快班】【免费公开课】数据科学无难事
【快班】【免费公开课】《Hadoop入门手册》之 虚拟机的安装和使用
【快班】【免费公开课】玩转数据艺术-数据展示技巧应用实战
【快班】【免费公开课】玩转数据科学——IBM DSX
【快班】【免费公开课】《Hadoop入门手册》——Apache Hadoop集群安装
【快班】【免费公开课】赢在大数据-数据化运营落地实战
【快班】大数据管理
【快班】Streams流计算引航公开课
【快班】抽样调查
【快班】LATEX公式排版系统引航
【快班】Watson Analytics数据分析应用实战公开课
【快班】数据陷阱解读
【快班】R七种武器之文本挖掘包tm
【快班】R七种武器之可视化JS库HTMLWidgets包
【快班】R七种武器之数据加工厂plyr
【快班】R七种武器之交互化展示包shiny
【快班】R七种武器之网络爬虫RCurl
【快班】R七种武器之数据可视化包ggplot2
【快班】R七种武器之金融数据分析quantmod
【快班】Java经验谈
【快班】Go语言实战编程
【快班】DB2 V11新特性全解析
【快班】DB2数据库引航公开课
【快班】STATA统计分析入门
【快班】初识正则表达式
【快班】perl语言入门
【快班】Scala语言入门
【快班】Spark企业级大数据项目实战
【快班】数据库引擎与SQL优化器开发
【快班】知识图谱实战
【快班】【百万年薪系列】视觉的盛宴:深度玩转人脸识别
【快班】深入浅出设计模式
【快班】Oracle特殊恢复原理与实战(DSI系列)
【快班】Puppet 运维自动化
【快班】ROS机器人操作系统实战
【快班】开启智慧眼-深度玩转计算机视觉与机器认知
【快班】 深度学习框架Keras学习与应用
【快班】zabbix企业级实践
【快班】Qt编程快速入门
【快班】python web框架企业实战详解
【快班】python魔鬼训练营
【快班】数据治理及数据仓库模型设计
【快班】金融的人工智能革命
【快班】软件架构必备基础
【快班】MySQL性能优化最佳实践
【快班】Spark源码导读
【快班】Spark大数据平台应用实战
【快班】金融时间序列分析
【快班】左飞的机器学习十八般算法武艺详解
【快班】计算机视觉与深度学习实战
【快班】Hadoop集群原理与运维实践
【快班】OpenCV计算机视觉产品实战
【快班】黄美灵的Spark ML机器学习实战
【快班】DevSecOps安全交付应用实战
【快班】JavaScript突击-从精通到项目实战
【快班】R语言魔鬼训练营
【快班】基于案例学习bash脚本编程
【快班】量化投资基础计算与模型
【快班】老板说服术之玩转数据展示
【快班】区块链技术从入门到精通
【快班】深入浅出Git
【快班】Oracle高可用
【快班】数据库系统实现技术内幕
【快班】Goldengate从入门到精通
【快班】PL/SQL实战魔鬼训练营
【快班】Oracle 12c特性解读-容器数据库和灾备
【快班】Oracle DBA从小白到入职实战应用
【快班】MySQL DBA从小白到大神实战
【快班】深入浅出Oracle
【快班】深度学习PostgreSQL
【快班】Oracle 12C RAC集群原理与管理实战
【快班】Mycat从入门到精通
【快班】基于案例学SQL优化
【快班】ELKStack及Solr企业级搜索引擎实战
【快班】大型电商分布式系统实践
【快班】深入理解Storm与大数据实战
【快班】深入浅出Spring
【快班】Java魔鬼训练营
【快班】面试突击-数据结构与算法速成
【快班】JAVA极客特训
【快班】深入JVM内核—原理、诊断与优化
【快班】Excel数据分析师突击—从入门到精通到项目实战
【快班】人工智能前沿系列之生成式对抗网络
【快班】基于案例学习时间序列分析
【快班】自己动手实践神经网络
【快班】 深度学习框架Tensorflow学习与应用
【快班】自然语言处理软件实验
【快班】Redis技术实战
【快班】推荐系统
【快班】Zookeeper分布式系统开发实战
【快班】Python数据分析案例实战
【快班】Python金融投资分析实践
【快班】Kafka原理剖析及实战演练
【快班】实战Java高并发程序设计
【快班】MongoDB实战
【快班】应用系统架构优化方法与案例实战
【快班】金融市场基础
【快班】Python自然语言分析
【快班】Python突击—从入门到精通到项目实战
【快班】HBase从入门到精通
【快班】Hive数据仓库实践
【快班】Hadoop数据分析平台
【快班】数据分析与SAS
【快班】比特币
【快班】机器读心术之文本挖掘与自然语言处理
【快班】机器读心术之神经网络与深度学习
【快班】快速上手Jmeter性能测试工具
【快班】软件性能测试
【快班】软件自动化测试Selenium2
【快班】大数据必知的java基础
【快班】快速数据挖掘平台RapidMiner
【快班】R语言编程技巧
【快班】深入BI之Kettle篇
【快班】基于案例学Java服务器端程序设计
【快班】Scala从基础到开发实战
【快班】供应链物流—电商发展的“核”动力
【快班】详解SQL与PL/SQL
【快班】Oracle职业直通车
【快班】深度玩转Excel
【快班】Hadoop应用开发实战案例
【快班】大数据的Linux基础
【快班】机器学习
【快班】量化投资
【快班】SPSS数据分析入门与提高
【快班】Python数据分析
【快班】NoSQL与NewSQL数据库引航
【快班】大数据算法导论
【快班】大数据的矩阵计算基础
【快班】R语言数据分析、展现与实例
【快班】大数据的统计学基础

热招课程

◆ 跟Py sir一起学Excel(第16期)
◆ 金融的人工智能革命(第31期)
◆ Architecting on AWS架构与实践(第15期)
◆ 快速成为深度学习全栈工程师(第20期)
◆ 从零入门金融业信贷风控算法(第15期)
◆ Python数据处理实战:基于真实场景的数据(第17期)
◆ Python全栈学习——Python自动化测试(第17期)
◆ 用AIOps打造你的智能工作伙伴(第1期)
◆ 人工智能与药物研发基础(第五期)
◆ 深度学习框架Tensorflow学习与应用(第20期)
◆ 股票投资基础之基本面分析(第26期)
◆ AI4ERP:RPA与大语言模型应用(第六期)
◆ Oracle SQL Tuning(DSI系列Ⅲ)(第24期)
◆ Python机器学习(第22期)
◆ Hive数据仓库实践(第20期)
◆ 怎样制作令人惊叹的视频-Manim科学动画篇(第四期)
◆ 安全渗透测试工具之Burp Suite使用精讲(第18期)
◆ Python金融业数据化运营实战(第25期)
◆ MySQL DBA从小白到大神实战(第29期)
◆ PyTorch – 深度学习全栈工程师进阶案例实战(第20期)
◆ 目标检测模型YOLOV3原理及实战(第22期)
◆ 黄美灵的Spark ML机器学习实战(第19期)
◆ 互联网金融中的交易反欺诈模型(第22期)
◆ Python机器学习Kaggle案例实战(第32期)
◆ 人人都是数据分析师——基于SAS Viya的机器学习与深度学习案例分析(第1期)
◆ 大语言模型部署(第七期)
◆ 快速搭建AIGC应用:Gradio快速入门与实战(第一期)
◆ Oracle特殊恢复原理与实战(DSI系列)(第24期)
◆ AI技术前瞻:Mamba(第一期)
◆ 股票投资基础之技术分析(第28期)
◆ Transformer从自然语言到计算机视觉的跨界之旅(第五期)

GMT+8, 2025-1-19 03:14 , Processed in 0.068660 second(s), 32 queries .